首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   1篇
  国内免费   2篇
安全科学   11篇
废物处理   22篇
环保管理   18篇
综合类   20篇
基础理论   28篇
污染及防治   118篇
评价与监测   12篇
社会与环境   6篇
灾害及防治   6篇
  2023年   3篇
  2022年   1篇
  2021年   2篇
  2019年   2篇
  2018年   4篇
  2017年   10篇
  2016年   8篇
  2015年   1篇
  2014年   4篇
  2013年   30篇
  2012年   13篇
  2011年   14篇
  2010年   15篇
  2009年   14篇
  2008年   17篇
  2007年   13篇
  2006年   14篇
  2005年   14篇
  2004年   13篇
  2003年   12篇
  2002年   9篇
  2001年   5篇
  2000年   7篇
  1999年   2篇
  1998年   1篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有241条查询结果,搜索用时 36 毫秒
61.
Aerosol from the burning two types of sandalwood-based incense, Hsing Shan and Lao Shan, was analyzed to characterize the chemical profile of total particulate matter emitted. The total particulate matter (PM) mass emission factors were 46.3 ± 2.68 mg g?1 of Hsing Shan incense and 43.7 ± 1.08 mg g?1 of Lao Shan incense. Chemical analysis of emissions from the two types of incense revealed that of the 25 components in four groups characterized, anhydrosugars formed the major group, at 46.7–52.2% w/w of the identified particulate and 1078.3–1169.8 μg g?1 of incense, followed by inorganic salts at 30.4–31.8% w/w of identified particulate and 681.6–734.0 μg g?1 of incense, carboxylic acids at 12.0–17.1% w/w of the identified particulate and 268.6–392.8 μg g?1 of incense, and sugar alcohols at 4.44–5.38% w/w of the identified particulate and 102.3–120.6 μg g?1 of incense. More anhydrosugars and sugar alcohols were emitted from Lao Shan incense than from Hsing Shan incense whereas more carboxylic acids and organic salts were emitted from Hsing Shan than from Lao Shan. These differences were due to structural and functional differences in the young sandalwood used to make Hsing Shan and the aged sandalwood used to make Lao Shan. The anhydrosugar levoglucosan, used as a marker of biomass burning, was always the most abundant species in emitted PM for both incenses (Lao Shan 21.7 mg g?1 of PM and Hsing Shan 18.7 mg g?1). K+ and Cl? were the second most abundant components (K+ and Cl? were summed), accounting for 10.6 mg g?1 of Hsing Shan PM and 9.85 mg g?1 of Lao Shan PM. The most abundant carboxylic acids in the emissions were formic, acetic, succinic, glutaric and phthalic acid. The latter is a fragrance ingredient and a potential health hazard and was twice as prevalent in Lao Shan emissions. Xylitol was the most prevalent of the sugar alcohols at 35.7–36.6% w/w of total identified sugar alcohols. These abundant species are potential markers for incense burning. K+, levoglucosan, mannosan and xylitol are already reported in discriminator ratios for wood burning and it is proposed here that these can and should also apply to incense burning. The calculated discriminator ratios for two types of incense burning reported here are 0.229–0.288 for K/Levo, 12.5–13.5 for Levo/Manno, and 21.5–23.7 for the novel discriminator ratio Levo/Xylitol.  相似文献   
62.
Natural and human activities generate a significant amount of PM2.5 (particles ≤2.5 μm in aerodynamic diameter) into the surrounding atmospheric environments. Because of their small size, they can remain suspended for a relatively longer time in the air than coarse particles and thus can travel long distances in the atmosphere. PM2.5 is one of the key indicators of pollution and known to cause numerous types of respiratory and lung-related diseases. Due to poor implementation of regulations and a time lag in introducing the vehicle technology, levels of PM2.5 in most Asian cities are much worse than those in European environments. Dedicated reviews on understanding the characteristics of PM2.5 in Asian urban environments are currently missing but much needed. In order to fill the existing gaps in the literature, the aim of this review article is to describe dominating sources and their classification, followed by current status and health impact of PM2.5, in Asian countries. Further objectives include a critical synthesis of the topics such as secondary and tertiary aerosol formation, chemical composition, monitoring and modelling methods, source apportionment, emissions and exposure impacts. The review concludes with the synthesis of regulatory guidelines and future perspectives for PM2.5 in Asian countries. A critical synthesis of literature suggests a lack of exposure and monitoring studies to inform personal exposure in the household and rural areas of Asian environments.  相似文献   
63.

Introduction

Solar wastewater treatment based on photocatalytic reactions is a green process that utilizes renewable energy resources and minimizes secondary pollution. Reactor design plays an important role in promoting treatment efficiency and throughput density (based on unit volume of the reactor).

Experimental

A rotating disk reactor that significantly increases the process efficiency has been designed and evaluated for application to photocatalytic decomposition of dye pollutants in aqueous solutions. In this process, a novel multi-layer rotating disk reactor (MLRDR) was presented. Photocatalyst (TiO2) particles are immobilized on the surfaces of disks. Within each layer of the reactor, methyl orange aqueous solution is allowed to flow from the center of the disk in a radial direction along the surface of the disk, which is rotating at high speed and is irradiated with UV lamps. The effluent is then directed to the center of another layer that lies underneath. Up to four stacked layers have been tested in this study, and the effects due to the number of the layers and volumetric flow rate on reaction conversion are investigated.

Results and discussion

The efficiency of this photocatalytic reactor exhibits complex dependence on these parameters. With selected operating conditions, conversions greater than 95% can be achieved within seconds of residence time. Design equations of the reactor have been derived based on fluid dynamics and kinetic models, and the simulation results show promising scale-up potential of the reactor.  相似文献   
64.
Chen YC  Tsai PJ  Mou JL  Kuo YC  Wang SM  Young LH  Wang YF 《Chemosphere》2012,88(11):1324-1331
In this study, the cost-benefit analysis technique was developed and incorporated into the Taguchi experimental design to determine the optimal operation combination for the purpose of providing a technique solution for controlling both emissions of PCDD/Fs and PAHs, and increasing both the sinter productivity (SP) and sinter strength (SS) simultaneously. Four operating parameters, including the water content, suction pressure, bed height, and type of hearth layer, were selected and all experimental campaigns were conducted on a pilot-scale sinter pot to simulate various sintering operating conditions of a real-scale sinter plant. The resultant optimal combination could reduce the total carcinogenic emissions arising from both emissions of PCDD/Fs and PAHs by 49.8%, and increase the sinter benefit associated with the increase in both SP and SS by 10.1%, as in comparison with the operation condition currently used in the real plant. The ANOVA results indicate that the suction pressure was the most dominant parameter in determining the optimal operation combination. The above result was theoretically plausible since the higher suction pressure provided more oxygen contents leading to the decrease in both PCDD/F and PAH emissions. But it should be noted that the results obtained from the present study were based on pilot scale experiments, conducting confirmation tests in a real scale plant are still necessary in the future.  相似文献   
65.
Selective surface modification of polyvinyl chloride (PVC) by ozonation was evaluated to facilitate the separation of PVC from other heavy plastics with almost the same density as PVC, especially polyethylene terephthalate (PET), by the froth flotation process. The optimum froth flotation conditions were investigated, and it was found that at 40°C, 90% of PVC and PET plastics floated. The bubble size became larger and the area covered with bubbles on the plastic surface was reduced with increasing temperature. Optimum PVC separation was achieved with the flotation solution at 40°C and mixing at 180–200 rpm, even for sheet samples 10 mm in size. Combined treatment by ozonation and froth flotation is a simple, effective, and inexpensive method for PVC separation from waste plastics.  相似文献   
66.
The fate of herbicides trifluralin, pendimethalin, alachlor and metolachlor in paddy field soils amended with plant materials was investigated. The plant materials were purple sesbania, vegetable soybean and rice straw. The investigation was performed at two temperatures (25 and 40°C) and two soil water moistures (60 and 90% water-holding capacity). The results showed linear and Freudlich equations described the adsorption of amide compound to soil. Adsorption coefficient (K d ) fit to linear equation were in general greater in plant material-amended soils than in non-amended soil, especially in soil amending with rice straw. Increasing temperature and soil water moisture content shortened the half-lives of compounds in various treated soils. The movement of compounds in the soil columns showed the maximum distribution of aniline type compound, trifluralin and pendimethalin, appeared at the upper top of 0 to 5 and 0 to 10 cm of soil column, respectively, and of anilide type, alachlor and metolachlor, were distributed at 0 to 25 cm of the soil column. The mobility of chemicals in the different treated soils was simulated by the behavior assessment model (BAM). There was no significant difference among different plant material incubated soils on dissipation and mobility of compounds in soils.  相似文献   
67.
68.
Abstract

Road dust contributes a large percentage of the atmosphere’s suspended particles in Taiwan. Three road dust samples were collected from downtown, electrical park, and freeway tunnel areas. A mechanical sieve separated the road dust in the initial stage. Particles >100 μm were 75%, 70%, and 60% (wt/wt), respectively, of the samples. Those particles <37 μm were resuspended in another mixing chamber and then collected by a Moudi particle sampler. The largest mass fraction of resuspended road dust was in the range of 1–10 μm. Ultrafine particles (<1 μm) composed 33.7, 17, and 7.4% of the particle samples (downtown, electrical park, and freeway tunnel, respectively). The road dust compositions were analyzed by inductively coupled plasma (ICP)-atomic emissions spectroscopy and ICP-mass spectrometry. The highest concentration fraction contained more aluminum (Al), iron (Fe), calcium (Ca), and potassium than other elements in the road dust particle samples. Additionally, the sulfur (S) content in the road dust from the electrical park and freeway tunnel areas was 2.1 and 3.4 times the downtown area sample, respectively. The sulfur originated from the vehicle and boiler oil combustion and industrial manufacturing processes. Furthermore, zinc (Zn) concentration in the tunnel dust was 2.6 times that of the downtown and electrical park samples, which can be attributed to vehicle tire wear and tear. Resuspended road dusts (<10 μm) from the downtown and freeway tunnel areas were principally 2.5–10 μm Al, barium (Ba), Ca, copper (Cu), Fe, magnesium (Mg), sodium (Na), antimony (Sb), and Zn, whereas arsenic (As), chromium (Cr), and nickel (Ni) were predominant in the ultrafine particle samples (<1 μm). Al, Ba, and Ca are the typical soil elements in coarse particles; and As, and Cr and Ni are the typical fingerprint of oil combustion and vehicle engine abrasion in ultrafine particles. There was a special characteristic of resuspension road dust at electrical park, that is, many elements, including As, Ba, Ca, cadmium, Cr, Cu, Fe, manganese (Mn), Ni, lead (Pb), S, vanadium (V), and Zn, were major in ultrafine particles. These elements should be attributed to the special manufacturing processes of electric products.  相似文献   
69.
Although trans-Alpine highway traffic exhaust is one of the major sources of air pollution along the highway valleys of the Alpine regions, little is known about its contribution to residential exposure and impact on respiratory health. In this paper, source-specific contributions to particulate matter with an aerodynamic diameter?<?10 μm (PM10) and their spatio-temporal distribution were determined for later use in a pediatric asthma panel study in an Alpine village. PM10 sources were identified by positive matrix factorization using chemical trace elements, elemental, and organic carbon from daily PM10 filters collected between November 2007 and June 2009 at seven locations within the village. Of the nine sources identified, four were directly road traffic-related: traffic exhaust, road dust, tire and brake wear, and road salt contributing 16 %, 8 %, 1 %, and 2 % to annual PM10 concentrations, respectively. They showed a clear dependence with distance to highway. Additional contributions were identified from secondary particles (27 %), biomass burning (18 %), railway (11 %), and mineral dust including a local construction site (13 %). Comparing these source contributions with known source-specific biomarkers (e.g., levoglucosan, nitro-polycyclic aromatic hydrocarbons) showed high agreement with biomass burning, moderate with secondary particles (in winter), and lowest agreement with traffic exhaust.  相似文献   
70.
ABSTRACT

The use of both oxygenated fuels in carbon monoxide (CO) nonattainment areas and reformulated gasoline in ozone nonattainment areas has been mandated by the 1990 Clean Air Act Amendments. Methanol has been proposed as an alternative fuel for CO nonattainment areas. Its use will potentially increase indoor methanol inhalation exposure resulting from the evaporation of metha-nol vapor from methanol-fueled vehicles parked in residential garages. Indoor air concentrations of metha-nol, benzene, and toluene were measured in a residential home with an attached garage. The effects of vehicle emission control devices (charcoal canister hose connection); home heating, ventilation, and air conditioning (HVAC) fans; ambient air, garage, and fuel tank temperatures; and wind speed were examined.

The disconnection of the charcoal canister hose, which simulates a spent evaporative emission control device, resulted in elevated benzene, toluene, and metha-nol concentrations in the garage and attached home. Higher fuel tank temperatures resulted in higher benzene and toluene concentrations in the garage, but not methanol. The concentrations for all compounds in the garage and concentrations of benzene and toluene in the adjacent room were lower when the HVAC fan was on than when it was off, while the concentrations of all three compounds in the rest of the house were higher, although these differences were not statistically significant. Thus, the portion of the population that parks cars in garages attached to homes will experience increased methanol exposures if methanol is used as an automotive fuel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号